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Abstract. A real-space renormalisation-group transformation is applied to study the 
order-disorder-displacive crossover in a 44 lattice model involving some nearest-neighbour 
and next-nearest-neighbour interactions. A non-trivial fixed point is found on the crossover 
surface. It is shown that the poir t is associated with a ‘true’ critical behaviour of the 
system. This critical behaviour is suggested to be a consequence of a continuous phase 
transition from a phase characterised by the appearance of locally ordered clusters and a 
long-range order between ther to a mo-e disordered high-temperature phase in which 
the clusters disappear. 

1. Introduction 

The 44 model on a lattice has been used in recent years to study some static and 
dynamic properties of systems undergoing structural phase transitions. The static 
renormalisation-group ( RG) analysis of the behaviour of two-dimensional 44 systems 
shows that their phase diagram can be divided into three regions, namely, an ordered 
phase, a disordered Ising-like region, and a Gaussian-like region. The division of the 
parameter space into the three regions is essentially the same for different parametrisa- 
tions (Bruce and Schneider 1977, Burkhardt and Kinzel 1979, Beale et a1 1981, Baker 
et a1 1982). The disordered Ising-like and Gaussian-like regions are separated by the 
so-called crossover line. Points on the crossover line flow under the RG transformation 
to a high-temperature fixed point. The ordered and disordered Ising-like regions are 
separated by a critical line and points on this line are driven by the RG transformation 
toward the king fixed point. Within the ordered phase as well as the disordered 
Ising-like region the renormalised one-point potential exhibits near the Ising limit a 
double-well structure, whether the original one-point potential has double-well (order- 
disorder regime) or single-well (displacive regime) character. Thus, close to the Ising 
limit, especially near the critical region, the coordinates of a renormalised displacive 
model reveal a behaviour qualitatively similar to that of the coordinates of an order- 
disorder model. This implies that the structural phase transitions have always order- 
disorder character in two dimensions and the essential difference between the two 
(displacive and order-disorder) categories of systems undergoing structural phase 
transitions appears to be a matter of length scales (Bruce 1978, Bruce et a1 1979). 
Moreover, systems undergoing structural phase transitions are in the same universality 
class as the Ising model (Beale et a1 1981). 

Results of the molecular-dynamics studies of systems exhibiting structural phase 
transitions give strong evidence of the formation of locally ordered domains or clusters, 
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separated by cluster walls (solitons), over a wide range of temperatures from tem- 
peratures close to but below the critical temperature (Schneider and Stoll 1973,1976, 
Schneider 1977). The very appearance of such clusters is accompanied by the presence 
of a double well in the effective one-particle potential, i.e. the real-site potential which 
is felt by each particle. Consequently, the fluctuations in the local order parameter 
can have two distinct time scales, namely, the short time scale associated with the 
relatively fast collective phonon-like oscillations around displaced or non-displaced 
instantaneous mean positions and the long time scale connected with the collective 
inter-well hopping. The occurrence of the collective motion of the second kind and 
the formation of locally ordered clusters is possible only if the effective site potential 
has a double-well structure. Such a structure can occur for order-disorder as well as 
for displacive models but its appearance is dependent on temperature. It turns out 
that above a certain temperature, called the crossover temperature TI, the system has 
no possibility of a spontaneous symmetry breaking and the effective one-point potential 
can have only the single-well character. It should be pointed out that TI is not the 
temperature To introduced earlier (Beale et a1 1981). The latter is a temperature of 
the non-critical crossover between two different kinds of the RG flow and, being a 
function of the parameters of the Hamiltonian, refers to each point on the crossover 
line in the parameter space. In turn, the temperature TI is connected to the fixed 
point of a RG transformation and appears to be a temperature of a continuous phase 
transition. At this temperature the system passes to a phase in which clusters disappear. 

The existence of only short-range ordered clusters below this temperature (but 
above the temperature of the structural phase transition T,) does not mean, however, 
that within this temperature range there is no long-range order and no phase transition. 
Since each cluster acts in principle as a ‘superparticle’ one can expect the occurrence 
of a long-range order associated with the correlations between clusters. Indeed, the 
RG analysis of the shape of the renormalised one-particle potential shows that the 
appearance of the double-well structure of the effective site potential, and hence the 
existence of locally ordered clusters, is due to the correlations of particles at sufficiently 
long distances (Beale et al 1981). When temperature increases up to  TI ,  the range of 
the correlations, which play an essential role in forming the double-well structure of 
the effective one-point potential, tends to infinity. Thus, the occurrence of locally 
ordered clusters near TI is caused by very long-ranged particle correlations. Accord- 
ingly, there are long-range correlations between clusters and at TI the range of the 
correlation of superparticle (cluster) fluctuations should diverge. The existence of the 
long-range order between clusters can also be explained as follows. The long-range 
order between particles occurs in 44 systems if the well depth of the effective one- 
particle double-well potential is sufficiently large compared with the particle thermal 
energy. Obviously, this condition is not satisfied for temperatures T > T, and the 
long-range order between particles does not appear. However, the well depth of the 
effective cluster potential, i.e. the potential barrier seen by the cluster during the 
inter-well hopping, is directly proportional to the number of particles of which the 
cluster consists. One can therefore expect that even above T, the well depth of the 
effective cluster potential is very large compared with the cluster thermal energy. In 
such a case clusters behave in the temperature range T, < T < TI in a similar way to 
simple particles below T,. This suggests that below TI there should occur a long-range 
order between clusters, although there is no long-range order due to correlations 
between simple particles. Obviously, the probabilities of the existence of two identical 
clusters but with opposite signs of the local order parameter are the same for T, < T < TI 
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and the long-range order between clusters can have only an ‘antiferromagnetic’ or 
‘antiferroelectric’ character. This long-range order vanishes when the temperature TI 
is approached since at TI clusters become unstable and decay. Then, the order-disorder- 
to-displacive crossover at TI can be considered as a continuous phase transition. In 
this paper we apply a real-space RG method to study the behaviour of an extended 
44 model near T,. We find a singly unstable (with respect to temperature) fixed point 
corresponding to TI and determine numerically the critical exponents v and 7. 

2. The model and the RG transformation 

It has been shown that the two-parameter space usually used for the RG analysis of 
the 44 model is not capable of yielding a correct and complete description of the 
behaviour of the system near the crossover region. Above all, the two-parameter RG 
approach leads to a Gaussian-like symmetry of the fixed point associated with TI and 
gives an infinite value for TI (Beale et a1 1981, Baker e? a1 1982, Baker and Bishop 
1982). Thus, to obtain a more realistic description of the system near TI one has to 
enlarge the parameter space, i.e. one has to take into account some additional interac- 
tions. Accordingly, we consider here the following Hamiltonian on a square lattice 

N N 
_-- H{xr’ - a ,  E xf - a,  E x f + K l  xlxl + K 2  E ( x l x ,  + x,x; )  + K ,  E x?x;  

kBT I = I  r=l (1.1) (1.1) (1.11 

with { x l }  being the displacements of a set of particles, the summation running over 
the N lattice points, and the symbols ( i , j )  and ( i , j )  denoting nearest-neighbour and 
next-nearest-neighbour pairs. It should be noted that the model described by the 
Hamiltonian (2.1) does not necessarily exhibit Gaussian-like symmetry at infinite- 
temperature fixed points. Indeed, it was proven that the lattice models for which the 
Hamiltonians satisfy the FKG inequalities (Fortuin e? a1 1971) always display the 
Gaussian-type symmetry at infinite-temperature fixed points of a block-variable RG 
(Baker and Krinsky 1977, Newman 1980). However, the FKG inequalities hold 
whenever the following conditions are fulfilled (Battle and Rosen 1980): 

a2X{xJ /ax ,  ax, > 0 ,  vi, j ( i  # j )  (2.2) 

where 9f denotes the Hamiltonian of a given lattice system. It can be easily verified 
that the conditions (2.2) are not in general satisfied for the Hamiltonian (2.1) because 
the variables xi take on values from -a to +CO. Thus, our model, in contrast to the 
ordinary 44 model, does not necessarily reduce to a Gaussian model at high- 
temperature fixed points. 

In the analysis of the behaviour of the system near the crossover fixed point, i.e. 
the fixed point related to the crossover temperature TI, we shall apply a lattice-space 
RG method which consists of the decimation transformation and a variable rescaling. 
The RG transformation associated with this method can be defined by 

(2.3) 

where E is a constant, and s denotes a variable rescaling factor which will be related 
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to the length rescaling factor b. The yi stand for new variables distributed on a new 
lattice, isomorphic to the original one, whose points belong to a subset Y, of the entire 
set of initial lattice points. As long as the factor s is not determined, the transformation 
(2.3) yields a line of fixed points (Bell and Wilson 1975), and to allow the method to 
be utilised one has to find a criterion for choosing the factor s. Such a criterion cannot 
however be found in a quite accurate and unambiguous manner. We note that the 
transformation (2.3) together with a suitable procedure for determining the factor s 
was used to describe the critical behaviour of a continuous-variable Ising model on a 
square lattice (Jezewski 1980, 1983). Since in this paper we are concerned with the 
behaviour of the system near the crossover fixed point, we can select the rescaling 
factor in such a way that the transformation (2.3) could have the crossover fixed point, 
i.e. the fixed point at which a? = O .  In the light of earlier investigations (Beale et al 
1981) the crossover fixed point should really exist. 

The numerical calculations for the Ising-like critical fixed point suggest that, as far 
as the transformation (2.3) is concerned, long-range and complex interactions are of 
minor importance compared with the interactions included in the Hamiltonian (2.1) 
(Jezewski 1983). Therefore, the Hamiltonian (2.1) is expected to be also adequate 
for discussing the behaviour of the system near the crossover fixed point. 

3. Critical behaviour at the temperature T, 

In applying the RG transformation (2.3) to the Hamiltonian (2.1) we employ here the 
cumulant expansion procedure (Niemeijer and van Leeuwen 1976). Accordingly, we 
split the Hamiltonian (2.1) into one-site terms (treated as a zeroth part) and multi-site 
terms or interactions (perturbational part). As can be easily shown, the first-order 
cumulant approximation is not good enough to provide a reliable analysis of the 
behaviour of the system near the crossover fixed point. The lowest-order approximation 
which can be considered as quite sensible is the cumulant expansion to second order 
in the interaction parameters. -The RG equations in the second-order approximation 
are found for the case of b = J 2  to be 

(3.1) 

(3.2) 

(3.3) 

U { = S 2 [  a , + 4z21(3 + 212K + 414K, K2 + 216K + 16( 1 2 1 4  - 1i)K3 L3], 

a ; = sJ[ a, - 412K1 K ,  - 414K ; - 2( 1 4  - 1:) K :I, 

K { = S2(L1 -I- 212K: + 414KlK2 + 216K:), 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
with 

+CC 

1, = dxx" exp(gx2-x4) dx exp(gx2 - x4) (3.9) L 
where g = a,/-& It is remarkable that the use of the non-Gaussian distributions in 



Crossover behaviour in an extended d4 model 1917 

deriving the above recursion relations does not involve the necessity of applying any 
approximations in further calculations. Indeed, for a given fixed point, equations (3.1),  
(3.2) and (3.3) can be cast in the form 

2 
( 1  - vf)RT- 4 1 -  uf)(R:)2), 

f 
( ~ ' ( 2  + s ' ) ~ +  s4(2 + s4) 

RT=s2(2+s2)  

(3.10) 

(3.11) 

(3.12) 

with 

u g * = 2 w - '  29 (3.13) 

f = ( '  4 0  +1 2g * w ) / w 2 ,  (3.14) 

where KT/JZ, z1 = J a ;  ZT and w = UTI,*. The solution of (3.10),  (3.11) and 
(3.12) gives the fixed-point values of the parameters a , ,  a2 and K,. Fixed-point values 
of other parameters can be expressed by U T ,  U ;  and K:. On solving (3.10), (3.11) 
and (3.12) one arrives at a cubic equation for w with the coefficients being functions 
of the factor-s. The numerical calculations show that for the case of the length rescaling 
factor b = J 2  and for values of variable rescaling factor in the range 0- ( S S 1  the RG 

equations have only one crossover fixed point, namely, 

- 

a = 1 , 2 , 3 ,  s = 0.952. (3.15) 

This point is singly unstable and lies on a surface of attraction which by analogy to 
earlier investigations (Beale et a1 1981) may be called the crossover surface. It must 
be stressed that the temperature Tl associated with the fixed point (3.15) is not 
necessarily infinite, as points on the crossover surface correspond in general to various 
systems described by the Hamiltonian (2.1) and thus to various values of TI. Then, 
the existence of the fixed point (3.15) can be connected to a continuous phase transition 
at finite temperature. The vanishing of the renormalised potential at the crossover 
fixed point bears a resemblance to the behaviour of the effective potential of a 
sine-Gordon system at the 'unlocking' transition (Puga et a1 1982). However, studies 
of the thermodynamic properties of kinks in one-dimensional continuum d4 and 
sine-Gordon systems suggest that the shape of the renormalised potential depends 
strongly on the parametrisation of the system (Maki and Takayama 1979, Takayama 
and Maki 1979). Thus, one can expect that on extending the Hamiltonian (2.1) to 
include additional couplings, or on extending the calculations to a fairly high order of 
the cumulant expansion, it would be possible to obtain a crossover fixed point for 
which a$ # 0, K z  f 0 and L2 f 0 (a = 1 , 2 , 3 ) .  It is to be noted that the phase transition 
at TI can be interpreted as a crossover from a low-temperature symmetry broken state 
to a high-temperature symmetric state, already known in field theory (Amit 1978, 
Brout and Deans 1983, Callaway and Maloof 1983). 

The definition of the order parameter, vanishing at TI, is in a sense a matter of 
choice. One of the most natural ways to choose the order parameter is 

a*-  , - a ,  * = K z  = LE =0,  

(3.16) 
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where p ; (  T )  and p ; (  T )  denote the probabilities of the occurrence of clusters with 1 
particles in a unit volume and at a given temperature T The superscripts + and - 
refer to two different directions in which the particles can be displaced. We remark 
that the least cluster consists of two particles. The dependence of the probabilities p 
on temperature is such that p t (  T )  > 0 and p ; (  T )  > 0 below TI (for each 12 2) and 
p:( T )  = p ; (  T )  = 0 above TI. Obviously, p t (  T )  Z p ; (  T )  below T, and p:( T )  = p ; (  T )  
for T,< T <  TI. The above features of the probabilities p reflect thermodynamic 
properties of clusters exhibited by computer simulations. The probabilities p do not 
yield, however, any detailed information concerning the topology and the shape of 
clusters. We notice that it would also be possible to define the order parameter taking 
into account the average size of clusters. Indeed, above T, the average size of clusters 
decreases and vanishes at TI. This also implies that the probability of the existence 
of large clusters decreases more rapidly than the probability of the existence of small 
clusters, as the temperature approaches TI.  

TI by the enlargement of the 
range of particle correlations, being of essential importance for the formation of the 
double-well structure of the effective one-point potential and thereby for the formation 
of locally ordered clusters. Thus, one can infer that clusters are strongly correlated 
with each other. These clusters, due to their stability, can be treated as long-lifetime 
superparticles. We notice that besides clusters, there are in the system also simple 
particles which do not belong to any cluster. The difference in the thermodynamic 
behaviour of clusters and simple particles appears to rely on the fact that the collective 
inter-well motions of clusters are associated with a very long time scale compared with 
fast motions of simple particles. In other words, clusters behave as superparticles with 
large masses in comparison with masses of simple particles. Then, the range of the 
correlation of fluctuations connected with interactions between single particles and 
clusters, similarly to the range of the correlation of single-particle fluctuations, does 
not tend to infinity above T,. However, the barriers which encounter clusters during 
the inter-well motions can be very large compared with their thermal energies, and 
in consequence clusters can reveal in the temperature range T,< T < TI a similar 
behaviour to simple particles below T,. One can therefore expect that when the 
temperature grows up to TI the range of the correlation of cluster fluctuations diverges 
and there is a long-range order associated with the existence of clusters and interactions 
between them. Since p t (  T )  = p ; (  T )  for T, < T < TI, such an order has an ‘antifer- 
romagnetic’ or ‘antiferroelectric’ character. 

The increase of temperature is accompanied for T 

The correlations between clusters can be described by the function 

asl(r) = (xixi+,) (3.17) 

where r is the distance (expressed in units of the lattice constant) between two given 
particles and cl denotes that these two particles belong to two different clusters. When 
r + c o  and T +  TI one can assume that the correlation function decays algebraically, 
i.e. for two-dimensional lattices one has 

gcdr) - r -q .  (3.18) 
The critical exponent 7 can be found from the relation (Jezewski 1980) 

(3.19) 

Then, for the crossover fixed point (3.15) we obtain r ]  = 0.284. We note that, according 
to (3.18) and (3.19), the restriction of s to the range O S  s s 1 we have adopted above 

= b-7712 
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appears to be quite appropriate. Near TI, the range of the correlation of cluster 
fluctuations is expected to be given by 

,$-IT- q-”. (3.20) 

The calculation of the critical exponent v can be performed by standard methods 
(Niemeijer and van Leeuwen 1976). After having used the recurrence relation 

- 
? ,+ ,=t (n+l )a2 i f l+ tgJa2  n = 0 , 1 , 2  , . . . ,  (3.21) 

one can show that the crossover fixed point is unstable only in the temperature direction 
with the critical exponent v = 1.010. It is rather striking that the indices v and 7 are 
close to the king indices vising= 1, One would suppose that the exact 
values of the critical exponents associated with the crossover fixed point are identical 
with those related to the fixed point which corresponds to the structural phase transition, 
although these two fixed points are located at quite different places of the parameter 
space. It must be emphasised that the temperature TI does not have to be infinite and 
the crossover fixed point can be accompanied by a ‘true’ continuous phase transition 
at a finite temperature. 

4. Concluding remarks 

We have employed a real-space RG method for studying the behaviour of a two- 
dimensional lattice system near the crossover temperature TI, at which there occurs 
a changeover from double-well structure of the effective potential to single-well 
structure. The temperature TI has been proven to be connected to a fixed point, 
unstable in the temperature direction. The critical exponents associated with this fixed 
point have been found to be close to the Ising indices. One then can conclude that at 
TI there occurs a continuous phase transition, which can be interpreted as a transition 
from a phase characterised by the existence of locally ordered clusters and by long-range 
order between them to a fully disordered phase. Obviously, the interpretation 
presented in this paper cannot be strongly supported by the RG analysis. It should be 
also noted that the RG analysis carried out in this paper is not complete because it 
does not include the investigation of the flow diagram. However, the examination of 
the flow diagram for the case of the eight-parameter Hamiltonian seems to be a very 
laborious problem. It would also be interesting to extend the above considerations to 
the case of three dimensions. There is experimental evidence that the temperature of 
the structural phase transition T, and the crossover temperature T ,  coincide for some 
ferroelectric perovskite systems (Muller et al 1982). 
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